Think of a rich tapestry, where every thread is carefully woven together to create a stunning masterpiece. In the intricate weave of human health, "amino acids" and "minerals" represent the individual threads. Their harmonious combination is essential for countless biological processes.
"Amino acids," the foundational components of proteins, form the bedrock of this tapestry. They are organic molecules featuring a central carbon atom connected to an amino group, a carboxyl group, a hydrogen atom, and a variable side chain [1]. The relationship between amino acids and calcium absorption is intricate, with specific amino acids playing a critical role in facilitating calcium's uptake from the intestines [2]. Similarly, the interaction between amino acids and magnesium metabolism is vital for numerous bodily functions, as amino acids can impact the absorption, distribution, and excretion of magnesium [3]. This side chain, unique to each amino acid, determines its specific characteristics and functions [4].
Beyond their role in protein synthesis, amino acids play pivotal roles in various biological processes:
Among the amino acid cornerstones, "glycine" stands out as a versatile thread. Its small size and neutral charge make it an ideal match for many minerals, ensuring seamless integration into the tapestry. Glycine’s role extends beyond mineral coordination, as it is also involved in neurotransmitter synthesis, collagen production, and other vital processes [11].
Glycine is a unique amino acid with several distinctive features:
Minerals, though often overlooked, add vibrancy and depth to this tapestry. They are inorganic elements essential for various bodily functions. Key minerals include:
They play crucial roles in various physiological functions, including:
The relationship between amino acids and minerals is a complex and multifaceted design. Amino acids can aid in the absorption and transport of minerals, while minerals can influence the metabolism and function of amino acids. This intricate pattern is essential for maintaining overall health and well-being.
The Dance of Chelation
When amino acids and minerals come together, a beautiful dance of chelation unfolds. Chelation involves the bonding of a metal ion (mineral) to a ligand (amino acid) to form a stable complex [15]. This process enhances the absorption, solubility, and bioavailability of minerals, making them more accessible for the body to utilize [16].
Glycine-Based APIs:
Several APIs have been developed to harness the power of amino acid-mineral chelation. These APIs act as the master artisans, ensuring that the tapestry of amino acids and minerals is woven with precision and artistry. Examples include:
Energy and Structure - Amino Acids vs. Fatty Acids in Metabolism
The intricate relationship between amino acids and mineral metabolism is a testament to the complexity and beauty of human biology. By understanding the tapestry of these nutrients, we can appreciate their vital roles in maintaining optimal health.
1. Devignes CS, Carmeliet G, Stegen S. Amino acid metabolism in skeletal cells. Bone Rep. 2022 Sep 8;17:101620. doi: 10.1016/j.bonr.2022.101620. PMID: 36120644; PMCID: PMC9475269. https://pubmed.ncbi.nlm.nih.gov/36120644/
2. Fukuda, S. Effects of active amino acid calcium: Its bioavailability on intestinal absorption, osteoporosis and removal of plutonium in animals. J Bone Miner Metab 11, S47–S51 (1993). https://doi.org/10.1007/BF02383541
3. Chandel NS. Amino Acid Metabolism. Cold Spring Harb Perspect Biol. 2021 Apr 1;13(4):a040584. doi: 10.1101/cshperspect.a040584. PMID: 33795250; PMCID: PMC8015690. https://pmc.ncbi.nlm.nih.gov/articles/PMC8015690/
4. National Research Council (US) Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. Recommended Dietary Allowances: 10th Edition. Washington (DC): National Academies Press (US); 1989. 6, Protein and Amino Acids. Available from: https://www.ncbi.nlm.nih.gov/books/NBK234922/
5. https://my.clevelandclinic.org/health/articles/22243-amino-acids
6. Medically reviewed by Kathy W. Warwick, RDN, CDCES, Nutrition — Written by Jillian Kubala, MS, RD — Updated on August 7, 2023. https://www.healthline.com/nutrition/essential-amino-acids
7. Wikipedia contributors. Amino acid. Wikipedia, The Free Encyclopedia. October 21, 2024, 03:53 UTC. Available at: https://en.wikipedia.org/w/index.php?title=Amino_acid&oldid=1252390999. Accessed October 22, 2024.
8. Rose AJ. Amino Acid Nutrition and Metabolism in Health and Disease. Nutrients. 2019; 11(11):2623. https://doi.org/10.3390/nu11112623
9. Tomé, D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Nutr. Diabetes 11, 20 (2021). https://doi.org/10.1038/s41387-021-00164-1
10. Frost DV, Sandy HR. Effects of Mineral Deficiencies on Amino Acid Utilization. Critical Role of Potassium and Phosphorus. Proceedings of the Society for Experimental Biology and Medicine. 1953;83(1):102-105. doi:10.3181/00379727-83-20278
11. https://www.webmd.com/vitamins/ai/ingredientmono-1072/glycine
12. Wikipedia contributors. Glycine. Wikipedia, The Free Encyclopedia. October 19, 2024, 05:00 UTC. Available at: https://en.wikipedia.org/w/index.php?title=Glycine&oldid=1251983852. Accessed October 22, 2024.
13. Razak MA, Begum PS, Viswanath B, Rajagopal S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid Med Cell Longev. 2017;2017:1716701. doi: 10.1155/2017/1716701. Epub 2017 Mar 1. Erratum in: Oxid Med Cell Longev. 2022 Feb 23;2022:9857645. doi: 10.1155/2022/9857645. PMID: 28337245; PMCID: PMC5350494. https://pmc.ncbi.nlm.nih.gov/articles/PMC5350494/
14. https://www.healthline.com/nutrition/glycine
15. Wikipedia contributors. Chelation. Wikipedia, The Free Encyclopedia. October 3, 2024, 01:24 UTC. Available at: https://en.wikipedia.org/w/index.php?title=Chelation&oldid=1249078000. Accessed October 22, 2024.
16. https://www.webmd.com/balance/what-is-chelation-therapy
17. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Chelating Agents. [Updated 2017 Jan 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548531/
18. Jacob, R.H., Afify, A.S., Shanab, S.M. et al. Chelated amino acids: biomass sources, preparation, properties, and biological activities. Biomass Conv. Bioref. 14, 2907–2921 (2024). https://doi.org/10.1007/s13399-022-02333-3
19. https://www.sciencedirect.com/science/article/abs/pii/S004484860400078X
20. Zhang L, Guo Q, Duan Y, Lin X, Ni H, Zhou C, Li F. Comparison of the Effects of Inorganic or Amino Acid-Chelated Zinc on Mouse Myoblast Growth in vitro and Growth Performance and Carcass Traits in Growing-Finishing Pigs. Front Nutr. 2022 Apr 7;9:857393. doi: 10.3389/fnut.2022.857393. PMID: 35464034; PMCID: PMC9021508. https://pmc.ncbi.nlm.nih.gov/articles/PMC9021508/
21. Fischer JAJ, Cherian AM, Bone JN, Karakochuk CD. The effects of oral ferrous bisglycinate supplementation on hemoglobin and ferritin concentrations in adults and children: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2023 Jul 10;81(8):904-920. doi: 10.1093/nutrit/nuac106. PMID: 36728680; PMCID: PMC10331582. https://pubmed.ncbi.nlm.nih.gov/36728680/
22. National Center for Biotechnology Information. PubChem Compound Summary for CID 9837124, Ferrous bisglycinate. https://pubchem.ncbi.nlm.nih.gov/compound/Ferrous-bisglycinate. Accessed Oct. 22, 2024.
23. Jeppsen RB, Borzelleca JF. Safety evaluation of ferrous bisglycinate chelate. Food Chem Toxicol. 1999 Jul;37(7):723-31. doi: 10.1016/s0278-6915(99)00052-6. PMID: 10496373. https://pubmed.ncbi.nlm.nih.gov/10496373/
24. El-Hawy MA, Abd Al-Salam SA, Bahbah WA. Comparing oral iron bisglycinate chelate, lactoferrin, lactoferrin with iron and iron polymaltose complex in the treatment of children with iron deficiency anemia. Clin Nutr ESPEN. 2021 Dec;46:367-371. doi: 10.1016/j.clnesp.2021.08.040. Epub 2021 Sep 29. PMID: 34857222. https://pubmed.ncbi.nlm.nih.gov/34857222/
25. Magnesium bisglycinate
26. https://www.healthline.com/health/magnesium-glycinate
27. Wikipedia contributors. Magnesium glycinate. Wikipedia, The Free Encyclopedia. August 16, 2024, 16:32 UTC. Available at: https://en.wikipedia.org/w/index.php?title=Magnesium_glycinate&oldid=1240661374. Accessed October 22, 2024.
28. https://www.verywellhealth.com/magnesium-bisglycinate-8727232
Â
Â
Tiandy Technologies CO.,LTD , https://en.tiandy.com